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ABSTRACT

Rainfall estimated from the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler

[WSR-88D (KOUN)] was evaluated using a dense Micronet rain gauge network for nine events on the Ft.

Cobb research watershed in Oklahoma. The operation of KOUN and its upgrade to dual polarization was

completed by the National Severe Storms Laboratory. Storm events included an extreme rainfall case from

Tropical Storm Erin that had a 100-yr return interval. Comparisons with collocated Micronet rain gauge

measurements indicated all six rainfall algorithms that used polarimetric observations had lower root-mean-

squared errors and higher Pearson correlation coefficients than the conventional algorithm that used

reflectivity factor alone when considering all events combined. The reflectivity based relation R(Z) was the

least biased with an event-combined normalized bias of 29%. The bias for R(Z), however, was found to vary

significantly from case to case and as a function of rainfall intensity. This variability was attributed to different

drop size distributions (DSDs) and the presence of hail. The synthetic polarimetric algorithm R(syn) had

a large normalized bias of 231%, but this bias was found to be stationary.

To evaluate whether polarimetric radar observations improve discharge simulation, recent advances in

Markov Chain Monte Carlo simulation using the Hydrology Laboratory Research Distributed Hydrologic

Model (HL-RDHM) were used. This Bayesian approach infers the posterior probability density function of

model parameters and output predictions, which allows us to quantify HL-RDHM uncertainty. Hydrologic

simulations were compared to observed streamflow and also to simulations forced by rain gauge inputs. The

hydrologic evaluation indicated that all polarimetric rainfall estimators outperformed the conventional R(Z)

algorithm, but only after their long-term biases were identified and corrected.

1. Introduction

Weather radars sample the atmosphere at high spatial

resolution over contiguous regions, whereas operational

rain gauge networks collect rainfall nearly continuously

at points. Despite the opportunity to capture the spatial

variability of rainfall, a number of studies have iden-

tified and quantified errors in radar rainfall estimation.

Relevant literature reviews of radar-based rainfall er-

rors can be found in Wilson and Brandes (1979), Austin

(1987), and Joss and Waldvogel (1990). The advent of
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dual-polarization capability with weather radar offers

opportunities in improving radar data quality and prod-

uct generation through the identification and removal of

nonweather targets, classifying hydrometeors, and im-

proving rainfall rate estimation (e.g., Straka and Zrnić

1993; Ryzhkov and Zrnić 1995; Vivekanandan et al. 1999;

Zrnić and Ryzhkov 1999; Bringi and Chandrasekar 2001).

For these reasons, the U.S. National Weather Service

(NWS) and other agencies will upgrade the nationwide

network of the Weather Surveillance Radar-1988 Doppler

(WSR-88D) radar with polarimetric capability. A rea-

sonable expectation is that improvements in rainfall rate

estimation will lead to better skill in hydrologic simu-

lation of stream discharge. This is of particular impor-

tance in the context of flooding, the second deadliest of

all weather-related hazards in the United States; heat is

the number one killer (Ashley and Ashley 2008).

Accurate forcing data is a prerequisite for stream-

flow simulation and is also a subject of particular interest

within the context of uncertainty quantification in hydrol-

ogic modeling. In hydrology, input uncertainty has been

treated as an extension to a model parameter estimation

problem (Beven and Binley 1992; Gupta et al. 1998; Vrugt

et al. 2005). Errors in rainfall, typically derived from rain

gauge networks, are assumed to be consistent and uni-

form within individual storms, and multipliers are used to

perturb storm depth on an event-by-event basis (Kavetski

et al. 2006; Vrugt et al. 2008). We anticipate results from

our study will help guide the hydrologic community to-

ward proper treatment of rainfall uncertainty, with par-

ticular consideration of the instrument(s) used to estimate

rainfall. Instrument-specific errors are important in the

context of prediction in ungauged basins owing to the

recent availability of rainfall from remote sensing systems.

This article is also meant to target the radar meteorology

community, who desire an answer to the following ques-

tions: Will dual-polarized radar improve hydrologic mod-

eling skill including extreme events such as flash floods?

Do improvements in the accuracy or precision with po-

larimetric rainfall estimates result in better hydrologic

simulations, or both?

Studies of rainfall estimates from polarimetric radar

as inputs to hydrologic models have been performed for

significant flash flooding events in the Buffalo Creek

watershed near Denver, Colorado, and in the Spring

Creek watershed in Ft. Collins, Colorado (Yates et al.

2000; Ogden et al. 2000). Yates et al. (2000) used rainfall

estimates from the National Center for Atmospheric

Research (NCAR) S-band, dual-polarization radar

(S-pol) to calibrate the U.S. Geological Survey (USGS)

Precipitation–Runoff Modeling System (Leavesley and

Stannard 1995). Runoff sensitivity tests were conducted

with different rainfall forcings, which highlighted the

complex, nonlinear response of the watershed. Simulated

discharge was found to be sensitive to the different rainfall

forcings (i.e., dual polarimetric versus single polarimet-

ric). Ogden et al. (2000) calibrated the Cascade Two-

Dimensional (CASC2D) model (Julien et al. 1995) with

forcing from Colorado State University (CSU)–University

of Chicago–Illinois State Water Survey (CHILL) S-band,

dual-polarization radar. A single parameter—soil satu-

rated hydraulic conductivity—was calibrated from rainfall–

runoff observations of a storm that occurred earlier in

the day that saturated soils and raised water levels in the

nearby Horsetooth reservoir. These designated param-

eter settings were then transferred to the Spring Creek

watershed for the flooding event, and reference sim-

ulations were created with inputs from CHILL rainfall

estimates. Sensitivity studies indicated errors in the spa-

tiotemporal distribution of rainfall estimation impacted

runoff simulations more significantly than details repre-

sented in the hydrologic model’s land surface parameters.

Both studies used indirect peak discharge estimated from

the USGS to compare with hydrologic model results, and

both found model parameter settings using event-based

forcing from the polarimetric radar-rainfall estimates;

that is, the model parameters settings were dependent on

the polarimetric rainfall forcing. These singular storm

studies demonstrated the potential applicability of dual-

polarization radar in hydrologic modeling, but the trans-

ferability of the results to calibrated, continuous hydrologic

simulation of multiple events remains an open question.

The study undertaken will evaluate dual-polarization

rainfall estimates as inputs to a calibrated, distributed

hydrologic model for a comprehensive dataset of storm

events.

The study capitalizes on data collected from KOUN in

Norman, Oklahoma, over a densely instrumented basin

near Ft. Cobb, Oklahoma. Rain gauges installed in the U.S.

Department of Agriculture Agricultural Research Service

(USDA–ARS) research watershed were used along with

USGS stream gauge data to calibrate the NWS Hydrol-

ogy Laboratory Research Distributed Hydrologic Model

(HL-RDHM) (Koren et al. 2004) for a 3-yr period. Can-

didate KOUN rainfall estimates were then substituted as

HL-RDHM inputs for nine events that had a complete

archive of KOUN observations. One of the events mak-

ing up the storm dataset includes an extreme rainfall and

deadly flooding event from a rare overland reintensifi-

cation of Tropical Storm Erin. Details of this remarkable

event are discussed in Arndt et al. (2009).

This paper is organized by describing the ARS Micro-

net instrumentation, physical characteristics of the Ft.

Cobb research watershed, and the storm event database

in section 2. Details of KOUN polarimetric rainfall esti-

mation are described in section 3. Section 4 presents a
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more traditional radar–gauge-based analysis by comparing

KOUN-based rainfall to collocated rain gauges within

the ARS Micronet. A novel approach to evaluating rain-

fall estimates from the perspective of hydrologic simula-

tions is introduced in section 5. This section also presents

results from the hydrologic evaluation. Because this ar-

ticle is intended to reach both hydrological and radar

meteorology communities, we anticipate readers from

the former audience will focus on sections 2 and 5, while

the latter will be most interested in sections 2–4 (and per-

haps 5). A summary and concluding remarks are provided

in section 6.

2. Study domain and instrumentation

The Ft. Cobb watershed was added to the USDA ARS

watershed research network in 2005 to address research

objectives related to constituents that impair water qual-

ity and wildlife habitat in Oklahoma. The basin was se-

lected for this study because it contains an ARS Micronet

of 15 in situ instruments that measure atmospheric and

soil properties, is situated 83–120 km from the KOUN

polarimetric radar, and has three USGS-gauged sub-

basins. These sources of data are beneficial for radar rain-

fall evaluation and assessing the impacts of polarimetric

rainfall estimation on hydrologic simulation. The Ft. Cobb

basin is 59% cropland according to the USGS National

Land Cover Database; the second largest classification

being grassland at 31% (Homer et al. 2007). Soils are

classified by the U.S. Natural Resources Conservation

Service State Soil Geographic database (STATSGO) as

being predominantly silt loam/loam and are considered

to be deep and well drained (Soil Survey Staff 1994;

USDA 1994; Soil Survey Staff 1996). A 30-yr climatology

of precipitation in Caddo County from the Oklahoma

Climatological Survey indicates the months of May and

June are the wettest, while the winter months of January

and February are the driest. The annual average rainfall

is 800 mm with a monthly maximum of 150 mm occur-

ring in May. The annual mean temperature is 16.28C and

May temperatures average 21.18C, which results in a vast

majority of the precipitation falling as rain. Contributions

to runoff from frozen precipitation and frozen soils were

negligible in this basin for the events collected.

The entire basin is 813 km2 in area, with 15 ARS Mi-

cronet stations that record air temperature, rainfall, rel-

ative humidity, solar radiation, and soil temperature at 5,

10, 15, and 30 cm below ground and soil water content at

5, 25, and 45 cm below ground (Fig. 1). Micronet obser-

vations were averaged over 5–30 min depending on the

instrument and then tested for validity using range, step,

persistence, spatial, and like-instrument comparisons de-

veloped for the Oklahoma Mesonet (Shafer et al. 2000;

Fiebrich et al. 2006). ARS Micronet tipping-bucket rain

gauges were used in this study to evaluate the accuracy

of rainfall estimates and to calibrate a distributed hydro-

logic model. The gauges, manufactured by Met One, are

neither heated nor shielded. The instrument collects rain-

fall at 0.6 m above ground in a 30-cm orifice, funnels the

rain to one of two buckets mounted on a balance pivot,

and fills the bucket until it tips and registers 0.254 mm of

rain. The number of tips is transmitted, quality controlled,

and archived on a 15-min basis.

There are three USGS stream gauges in the basin

(USGS site numbers 07325800, 07325850, and 07325860)

with contributing drainage areas of 342, 154, and 75 km2,

respectively (Fig. 1). The stream gauges report stream dis-

charge on a 15-min basis. Streamflow measurements from

USGS 07325800 are used in this study to evaluate hydro-

logic simulations forced by polarimetric rainfall estimates.

From 2005 to 2008, nine events that produced signif-

icant rainfall and were observed over their complete life

cycle on Ft. Cobb by KOUN were identified for study

(see Table 1). This latter criterion is necessary when using

rainfall datasets as inputs to hydrologic models; all rain-

fall contributing to basin streamflow must be collected

continuously. The storm database consists of severe con-

vective storms, mesoscale convective systems (MCS),

and extreme rainfall from a strengthening TS Erin. The

Oklahoma Climatological Survey reported that TS Erin

produced 187 mm of rain in three hours at the Ft. Cobb

Mesonet site; this rainfall was determined to have a re-

turn period of 500 years. The same rain gauge collected

a total of 235 mm of rain from TS Erin in 24 h. The

flooding impacts from TS Erin in Caddo County were

devastating. Four people lost their lives. Three persons

perished as their van was swept off the road and washed

downstream, and an elderly person drowned in a flooded

basement. There were dozens of rescues of motorists

and residents. The property damage in Caddo County

was estimated at $110 000, while the damage across the

entire state of Oklahoma was estimated at $4 960 000

with two additional fatalities (NWS 2007).

3. KOUN polarimetric rainfall estimation

The prototype polarization upgrade of the WSR-88D

radar network sited in Norman, Oklahoma, has been col-

lecting data in simultaneous transmission and reception

mode at S-band frequency for selected events since 2002.

The resolution of the data of 0.250–0.267 km in range and 18

in azimuth correspond to a short dwell time (48 sam-

ples) to satisfy the Next Generation Weather Radar

(NEXRAD) antenna rotation rate of three revolutions

per minute. The accuracy of derived rain products de-

pends on the quality of the raw polarimetric variables.
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Data quality procedures have been developed and ap-

plied to KOUN data as described in Ryzhkov et al. (2005a)

and Ryzhkov et al. (2005c); a brief summary is provided

herein. Calibration of radar reflectivity Z to within 1 dB

was achieved through comparison to the nearby WSR-

88D radar in Twin Lakes, Oklahoma, KTLX, which was

shown to be well calibrated in Ryzhkov et al. (2005a)

and Giangrande and Ryzhkov (2005). Differential reflec-

tivity ZDR was manually calibrated to within 0.2 dB for

each event by examining dry aggregated snow above the

melting layer at elevation angles between 4.58 and 68. Here,

the true or intrinsic ZDR is known to be approximately

FIG. 1. Digital elevation model of the Ft. Cobb basin, a USDA–ARS research watershed.

USDA–ARS Micronet stations and USGS stream gauges are shown as symbols indicated in the

legend. The circled USGS station corresponds to USGS 07325800. Contributing basin areas are

outlined in white.

TABLE 1. Listing of event dates, hours of KOUN observation, and hours of hydrologic simulation. Reports of severe weather from the

Storm Prediction Center are noted in the event description. Peak discharge corresponds to the USGS station 07325800 (Cobb Creek near

Eakly, OK). See section 2 for a detailed description of event 5, extreme flooding.

Event Date

Start time

(h UTC)

Hours of

rainfall

Hours of

streamflow Event type

Peak discharge

(m3 s21)

1 12 Jun 2005 2100 6 75 Severe convection (wind) 138.3

2 30 Sep 2005 2000 14 52 Severe convection (hail) 15.0

3 14 Jun 2007 0000 61 72 MCS 137.2

4 20 Jun 2007 0000 11 72 MCS 37.1

5 18 Aug 2007 2300 14 31 TS Erin 213.8

6 2 Mar 2008 2200 8 38 Severe convection (wind, hail) 2.8

7 31 Mar 2008 0000 16 168 Severe convection (hail) 11.3

8 7 May 2008 6000 20 138 Isolated convection 32.6

9 9 Jun 2008 0000 18 96 MCS 29.5
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0.3 dB, which was used for each case to manually calibrate

ZDR values. Range profiles of the differential propagation

phase shift FDP were used to correct for attenuation losses

in Z and ZDR (Ryzhkov and Zrnić 1995). The range de-

rivative of FDP, specific differential phase shift KDP, was

computed as the slope of a least squares fit over path-

lengths of 9 or 25 successive gates (corresponding to 2.25

or 6.25 km). Light filtering over nine gates was used if all

bins had Z . 40 dBZ in the path, else the heavily filtered

KDP was used (Ryzhkov and Zrnić 1996). Smoothed ZDR

data were created by averaging ZDR values along three

radials and five adjacent range gates centered on each

pixel, totaling a 15-gate average. Experimental results

from Ryzhkov et al. (2005a) compared to the theoretical

analysis of Bringi and Chandrasekar (2001) found the

standard deviation in the KOUN ZDR measurements to

be between 0.2 and 0.3 dB, corresponding to 48 samples

and measured values of copolar cross-correlation co-

efficient rHV in rain. This smoothing was meant to reduce

the noisiness in ZDR measurements stemming from the

short dwell time to within 0.1–0.2 dB.

The quality controlled polarimetric variables collected

at 0.58 elevation angle were used to compute rainfall

rates. In this study, we investigated the skill of seven

different rainfall algorithms. Prior to the computation of

rainfall rates, a fuzzy logic hydrometeor classification

algorithm (HCA) described in Giangrande and Ryzhkov

(2008) and Park et al. (2009) was used to discriminate

meteorological and nonmeteorological echoes. The HCA

uses Z, ZDR, rHV, and a texture parameter that describes

the standard deviation of small-scale fluctuations of Z

[SD(Z)]. These variables are useful in identifying hy-

drometeor type (e.g., graupel, hail, aggregates) and ad-

justing the estimation scheme accordingly. Precipitation

rates were computed at grid points having rHV . 0.85

and signal-to-noise ratio (SNR) . 8 dB so as to mini-

mize the effect of noisy measurements. This study ex-

amined the skill of the following relations:

R(Z) 5 (1.7 3 10�2)Z0.714, (1)

R(K
DP

) 5 44.0jK
DP
j0.822sgn(K

DP
), (2)

R(Z, Z
DR
jJPOLE) 5 (1.42 3 10�2)Z0.770Z�1.67

dr , (3)

and

R(Z, Z
DR

BCj ) 5 (6.70 3 10�3)Z0.93Z�3.43
dr . (4)

In (1)–(4) Z is expressed in linear units (mm6 m23),

Zdr is in linear units as denoted by the lowercase ‘‘dr’’

subscript, KDP is in degrees per kilometer, and R is

in millimeters per hour. Note that (1) is the standard

NEXRAD Z–R relation (Z 5 300R1.4) (Fulton et al.

1998). The parameters for (2) and (3) were derived using

KOUN radar and rain gauge data collected during the

Joint Polarization Experiment (JPOLE) (Ryzhkov et al.

2005c). It is possible to arrive at negative values of R

using (2) due to noisiness in KDP in light rain and non-

uniform beam filling effects. In this study, negative

values of R(KDP) were set to 0 mm h21 because nega-

tive values of R are nonphysical and not tolerated by the

hydrologic model. The coefficients in (4) were computed

by independently varying the parameters of a gamma

drop size distribution (DSD) and simulating R, Z, and

ZDR data as described in Bringi and Chandrasekar

(2001, section 8.1.1) The efficacy of the HCA on pre-

cipitation estimation was evaluated by considering (3)

and (4) but using (2) for each pixel that was classi-

fied as hail. These relations are hereafter referred to as

R(Z, ZDRjJPOLE, HCA) and R(Z, ZDRjBC, HCA),

respectively. The final algorithm evaluated in this study

was the ‘‘synthetic algorithm’’ R(syn), hereafter, described

in Ryzhkov et al. (2005b) with slight modifications. This

algorithm was found to be the optimum relation during

JPOLE in terms of lowest rms error (RMSE) and bias

using rain gauges at distances from 50 to 80 km of KOUN

(e.g., the ARS network in the Little Washita watershed).

Here R(syn) uses an R(Z, ZDR) relation tuned for light

rain if R(Z) from (1) is less than 10 mm h21 [note the

original synthetic algorithm used a R(Z) threshold of

6 mm h21]. For 10 , R(Z) , 50 mm h21, R(syn) uses

an R(KDP, ZDR) relation tuned for moderate precipita-

tion rates. For intense precipitation possibly mixed with

hail, R(syn) reverts to (2) for R(Z) . 50 mm h21 due to

the assumption of KDP being less susceptible to hail

contamination at S band. All rainfall algorithms de-

scribed above have been capped so that their maximum

computed values were 100 mm h21. Precipitation rates

computed from each algorithm were aggregated to hourly

accumulations and resampled on a 200-m resolution

Cartesian grid.

4. Rain gauge evaluation

The high-density Micronet rain gauge network shown

in Fig. 1 was used to evaluate all seven KOUN precip-

itation algorithms. In this section, rain gauges are con-

sidered ground truth. However, numerous studies have

pointed out errors with rain gauge accumulations of rain-

fall (Zawadzki 1975; Wilson and Brandes 1979; Marselek

1981; Legates and DeLiberty 1993; Nystuen 1999; Ciach

2003). Radar-derived rainfall estimates and rain gauge

accumulations are both prone to error, so the following

analysis should be interpreted as instrument compari-

sons. Figure 2 shows scatterplots of the KOUN hourly
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FIG. 2. Scatterplots of hourly rainfall from

KOUN (a) R(Z) (b) R(KDP), (c) R(Z,

ZDRjJPOLE), (d) R(Z, ZDRjBC), (e) R(Z,

ZDRjJPOLE, HCA), (f) R(Z, ZDRjBC, HCA),

and (g) R(syn) compared to collocated ARS

Micronet rain gauge accumulations for events

listed in Table 1. Number of radar–gauge pairs

in each panel is 1299.
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precipitation amounts to collocated rain gauge accumu-

lations for all events listed in Table 1. Each panel indi-

cates the normalized bias (NB), the RMSE computed

after the radar bias was removed, or the standard error

(SE), and Pearson correlation coefficient (CORR), de-

fined as follows:

NB 5

�
i51:N

R
i
�G

i

�
i51:N

G
i

, (5)

SE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E R

�
i51:N

G
i

�
i51:N

R
i

�G

0

B

B

@

1

C

C

A

22

6

6

4

3

7

7

5

v

u

u

u

u

u

t

, (6)

and

CORR 5
cov(G, R)

s
G

s
R

, (7)

where

cov(G, R) 5 E[(G� E(G))(R� E(R))]. (8)

Here NB is dimensionless, SE is in millimeters, and CORR

is dimensionless. The summations in (5) and (6) are over

each ith radar–gauge pair, yielding a sample size N of 1299.

In (6) and (8) E(�) refers to the expected value. In the

computation of CORR, s is the standard deviation; NB,

when multiplied by 100, is the same as the fractional bias

(FB in percent) used in Ryzhkov et al. (2005b).

The first notable feature of Fig. 2 is the binning of light

rain gauge accumulations into 0.254 mm amounts cor-

responding to individual tips. Caution must be exercised

in evaluating KOUN skill for hourly gauge accumula-

tions less than 1 mm. In comparison to the conventional

estimator R(Z) in Fig. 2a, the polarimetric algorithms

reduced the SE by 0.70–1.56 mm, improved the CORR

from a baseline of 0.83 to 0.87–0.91, but lowered the NB

by 1%–33%, resulting in underestimation. Overall, these

results are quite consistent with those of Ryzhkov et al.

(2005b) and Giangrande and Ryzhkov (2008), who also

examined KOUN polarimetric rainfall algorithms using

ARS Micronet rain gauges. The primary difference with

the findings in Fig. 2a and those from the aforemen-

tioned studies is the NB. The former KOUN rainfall study

shows R(Z) overestimated hourly rain gauge amounts by

19.4%, while the latter indicates R(Z) had a positive bias

of 1.5 mm at a range of 100 km. A reduction in the NB

with the polarimetric algorithms resulted in values closer

to 0. In our case, R(Z) underestimated gauge accumula-

tions by 9%. Thus, the expected and observed trend of

negatively biasing precipitation amounts with polari-

metric algorithms results in more underestimation. This

prompted us to examine the behavior of NB as a func-

tion of rainfall intensity and storm event.

Figure 3 shows the NB with the conventional estimator

is more sensitive to rainfall intensity than the polarimetric

algorithms. The R(Z) NB decreases from 20.09 to 20.32

with increasing rainfall intensity. The NB values with the

polarimetric algorithms, on the other hand, show much

less dependence on rainfall intensity. Independence of NB

on rainfall rate suggests lack of sensitivity to DSD var-

iability and is thus a favorable feature. However, when

considering the entire dataset in Fig. 3 (G . 0 mm h21),

the NB closest to 0 occurs with R(Z).

Figure 4 shows the NB for each event from all seven

algorithms. The right-hand ordinate indicates the basin-

averaged rainfall estimated from rain gauge accumula-

tions. Here R(Z) had the ‘‘best’’ average NB when all

FIG. 3. Normalized bias of KOUN rainfall algorithms as a function of hourly rainfall gauge

accumulation.
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events were combined, as mentioned previously, but is

shown to have the greatest variability from case to case;

R(Z) demonstrates an NB as low as 20.39 for event 5

(TS Erin, refer to Table 1) and as high as 0.82 for event 7.

A plausible explanation for the R(Z) NB variability is

sensitivity to DSD and presence of hail. With tropical

rain characteristics in event 5, R(Z) is known to under-

estimate precipitation with the standard NEXRAD re-

lation because of the high concentrations of relatively

small-diameter drops (e.g., Smith et al. 1996; Petersen

et al. 1999). If hail is present, then R(Z) is known to

overestimate rainfall due to the high reflectivity values

relative to their liquid water content (Ryzhkov et al.

2005b). This factor evidently was predominant in events

6 and 7. In fact, Vulpiani et al. (2009) discussed ‘‘pro-

nounced polarimetric hail signatures’’ over Ft. Cobb

during event 7. Here R(syn) shows the least variability in

NB from event to event with a standard deviation in NB

of 0.11 compared to a standard deviation of 0.40 with R(Z).

The HCA components added to both R(Z, ZDRjJPOLE)

and R(Z, ZDRjBC) algorithms resulted in lower standard

deviations of NB from event to event. Apparently, the

HCA successfully identified the presence of different hy-

drometeors (e.g., hail, graupel, aggregates) and adjusted

the precipitation estimation schemes accordingly. Im-

pacts of the identified radar-based precipitation errors

and their temporal stability on hydrologic simulation are

subjects addressed in the following section.

5. Hydrologic evaluation

The second component of this study is an evaluation

of KOUN precipitation estimators in the context as in-

puts to a distributed parameter hydrologic model. The

primary focus is to answer: will polarimetric radar up-

grades to the WSR-88D network improve hydrologic

simulation and flash-flood forecasting? As in the previ-

ous section, R(Z) is the least biased when considering all

events, but this bias is nonstationary and the algorithm

was shown to be the least precise; R(syn), on the other

hand, was shown to have a significant normalized bias at

231%, but it is stationary and thus readily amendable.

The latter algorithm was also shown to be more precise

with a lower SE. The hydrologic evaluation undertaken

herein has been adapted from the original technique of

Gourley and Vieux (2005) to evaluate the effects of po-

larimetric radar observations on streamflow simulation.

a. HL-RDHM

The model concepts used in this study originate from

the Sacramento model (Burnash et al. 1973). This model

was subdivided into grid cells having 4.76-km resolution,

in accordance with the NWS Hydrologic Rainfall Anal-

ysis Project (HRAP) grid. Each grid cell has a water

balance component as well as kinematic overland and

channel routing components (Koren et al. 2004). The

water balance component of the model, referred to as

the Sacramento Soil Moisture Accounting model (SAC-

SMA), considers forcing from spatially variable rainfall

inputs and monthly potential evaporation (PE) demand

when transferring water between the surface, upper and

lower soil zones, and channels. SAC-SMA utilizes a to-

tal of 16 parameters and six state variables characteriz-

ing the water contents and fluxes between the upper and

lower soil zones. Eleven of the 16 parameters are spa-

tially distributed with a priori values supplied by em-

pirical relations to observed or inferred soil properties

and depths (Koren et al. 2000). Precipitation excess is

FIG. 4. Normalized bias of KOUN rainfall algorithms as a function of storm event. See Table 1

for a description of each event.
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computed at each grid cell and then kinematically routed

downhill/downstream based on cell connectivity derived

from a digital elevation model. The channel density and

overland roughness values are set to constant values. The

channel routing component assumes a power-law relation

between the cross-sectional area of the stream and dis-

charge. Two parameters defining the relation were found

empirically using available observations from USGS

stream gauging locations in the Ft. Cobb watershed (see

Fig. 1). These routing parameters were then redistributed

upstream from each USGS station to contributing grid

points and as such are spatially distributed. In total, HL-

RDHM uses 18 SAC-SMA and channel routing param-

eters, 5 of which are lumped.

b. Assessment of rainfall inputs using
DREAM (ARID)

The method of evaluating model inputs by comparing

hydrologic simulations to observed streamflow is subject

to the parameter settings of the model. For instance, a

rainfall input that is biased low can appear to be a skillful

input if the model parameters have been tuned over

a sufficiently long calibration period to expect errone-

ously low rainfall amounts. This model ‘‘self-adjustment

process’’ is particularly achievable with a highly param-

eterized model, such as HL-RDHM, which has 18 pa-

rameters. To separate the effects of errors in model inputs

and subsequent adjustment by model parameters, we have

carefully designed a methodology that begins with auto-

matic parameter estimation.

Vrugt et al. (2009) demonstrated a model parameter

estimation framework based on an adaptive Markov

Chain Monte Carlo (MCMC) algorithm, called Differ-

ential Evolution Adaptive Metropolis (DREAM). The

method runs multiple chains simultaneously to explore

the global parameter space, and it automatically tunes

the scale and orientation of the proposed distributions

in estimating the posterior distribution of parameters.

Once the marginal posterior probability density functions

(pdfs) of the parameters are estimated, ensemble stream-

flow prediction and appropriate estimation of uncertainty

bounds ensue by sampling the joint parameter pdfs. The

DREAM method was developed for complex, highly

nonlinear, multimodal target distributions, while main-

taining ergodicity and good efficiency.

In the case of the Ft. Cobb watershed, the ‘‘true,’’

unbiased rainfall is supplied by the 15 ARS Micronet

tipping-bucket rain gauges (see Fig. 1). Hourly rainfall

fields were computed from the gauge observations using

a two-parameter inverse-distance weighting scheme with

a ‘‘leave one out’’ cross-validation step. The gauge-based

rainfall fields were then sampled on the hydrologic

model’s HRAP grid, which has a nominal grid spacing of

4.76 km. The gauge rainfall fields R(gag) were input into

HL-RDHM over the DREAM calibration period June

2005 through June 2008. The length of time considered

in this study corresponds to the period of record of ARS

Micronet rain gauge data availability in Ft. Cobb.

The HL-RDHM was then run in the DREAM param-

eter estimation framework using rainfall forcing from

R(gag). The sum of squared errors, computed by com-

paring simulated to observed streamflow at a USGS

stream gauging location (07325800, refer to Fig. 1), was

the objective used to define simulation skill. DREAM

converged on final parameter settings by optimizing sca-

lars applied to 18 parameter fields, 5 of which were spa-

tially uniform, requiring 647 425 function evaluations. The

calibrated hydrograph is shown with observed streamflow

in Fig. 5. Figure 5b shows that there was a tendency for

the model to overforecast, especially from August 2006

through March 2007, when there was little or no observed

streamflow. Also, Fig. 5c indicates some larger peak dis-

charges were underestimated in October 2007 and May–

June 2008. Overall, the DREAM automated parameter

estimation methodology yielded a Nash–Sutcliffe coeffi-

cient of efficiency (NSCE) (Nash and Sutcliffe 1970) of

0.83 and NB (defined as the sum of simulated minus ob-

served runoff, divided by the sum of observed runoff, in %)

of 224.56%. While these skill scores during calibration

are acceptable, perhaps some improvements could have

been made with a different approach toward parameter

estimation, such as manual adjustment. However, for the

purposes of this hydrologic evaluation, we required that

the parameter estimation be automatic and thus com-

pletely objective.

The method to evaluate rainfall algorithms as inputs

to hydrologic models, ARID, is particularly useful for

rainfall algorithms derived from new sensors or experi-

mental technologies (e.g., dual-polarized radar) for which

there may not be the availability of a continuous record

to be used for calibration, which was the case with the

KOUN polarimetric radar observations. Otherwise, it

would be possible to directly use the evaluated rainfall

algorithms, even if bias is present, during the calibration

period; this latter approach is recommended for instru-

ments that operate and are maintained continuously by

agencies such as the NWS. The fundamental require-

ment of ARID having a hydrologic model whose pa-

rameters were estimated using unbiased rainfall forcing

has been achieved at this point. The next step in ARID

replaces the R(gag) inputs with each of the KOUN-

based precipitation algorithms described in section 3 for

the events listed in Table 1. The calibrated HL-RDHM

model is then run continuously over the 3-yr period.

Here R(gag) rainfall is input to the model for the times

at which KOUN data were not available so that the model
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states are representative leading up to the events listed

in Table 1.

Simulated and observed discharge for all nine events

using inputs from the seven KOUN-based precipitation

algorithms and ‘‘true rainfall’’ from R(gag) are shown in

Fig. 6. At first glance, it appears that the error in simu-

lating peak discharge from event to event can be directly

anticipated based on the rainfall biases shown in Fig. 4.

Specifically, the majority of the simulated hydrographs

tended to underestimate observed streamflow owing to

the negatively biased rainfall inputs (Figs. 6a,c,d,e,h). On

the other hand, overestimation of streamflow occurred

with the cases that were noted to contain hail in the rain

gauge evaluation (Figs. 6f,g). Curiously, there were two

events in which many of the rainfall inputs were negatively

biased according to Fig. 4, yet simulated streamflow still

overestimated observed flow significantly (Figs. 6b,i). In

fact, overestimation of streamflow occurred with all events

that had peak discharge ,30 m3 s21. It is quite plausible

that the combination of model error and parametric un-

certainty dominated the simulated streamflow response

for these weaker events where the streamflow response

was less influenced by the rainfall forcing. The same errors

occurred with simulated hydrographs that used R(gag)

forcing; thus, it is important to cast the results from the

hydrologic evaluation relative to the calibrated simulations.

To facilitate interpretation of the results in Fig. 6 in

a condensed format, we computed statistical measures

summarizing the precision and accuracy of the simula-

tions for the 3-yr period of study. Here R(gag) were used

as inputs for a majority of the study period, and the

KOUN-based precipitation algorithms substituted for

the events listed in Table 1; we thus define the following

statistics to evaluate simulations from each of the KOUN

precipitation algorithms relative to the skill of the

DREAM-based R(gag) calibration run (see Fig. 5):

GRE 5 1�
�
N

i50
(QR

i �Qobs
i )2

�
N

i50
(Q

R(gag)
i �Qobs

i )2

, (9)

where GRE is the gauge-relative efficiency for simula-

tions corresponding to each of the KOUN-based pre-

cipitation inputs R, Q is the streamflow at each ith 15-min

time step, and the superscript ‘‘obs’’ represents the ob-

served streamflow. The GRE is very similar in formu-

lation to the more common NSCE. The difference is that

the mean observed streamflow present in the denominator

of NSCE is replaced with the Q
R(gag)
i simulation that had

DREAM-optimized parameters with unbiased rainfall

forcing from R(gag) shown in Fig. 5. The GRE score

FIG. 5. Simulation of HL-RDHM discharge with parameters

optimized using DREAM automatic calibration method. Rainfall

inputs were from ARS Micronet rain gauges on Ft. Cobb water-

shed. Comparison to observed streamflow at USGS 07325800

resulted in a Nash–Sutcliffe efficiency score of 0.83 and normal-

ized bias of 224.56%.
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thus casts simulation skill in relation to the skill achiev-

able by the calibration run. A score of 0 indicates the R

rainfall input resulted in the same efficiency that was

obtained using true R(gag) rainfall in the model calibra-

tion run. A score of 1 indicates the simulation skill ex-

ceeded that produced by model calibration and agreed

perfectly with observations. GRE scores worsen as they

become more negative up to 2‘, indicating the least skill.

The second statistic computed is defined as follows:

GRB 5

�
N

i50
(QR

i �Qobs
i )

�
N

i50
Qobs

i

�
�
N

i50
(Q

R(gag)
i �Qobs

i )

�
N

i50
Qobs

i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

3 100,

(10)

where GRB (%) is the gauge-relative bias for simula-

tions corresponding to each R. GRB 5 0% indicates the

simulation bias was the same as that achieved with

R(gag) inputs, or 224.56%. The two statistics shown in

(9) and (10) have been designed with the expectation

that simulation skill will generally worsen when the

rainfall forcing deviates from the true rainfall used in the

calibration step.

Figure 7 shows a two-dimensional plot of GRE and

GRB for each of the KOUN precipitation algorithms

evaluated in this study. Simulation skill equivalent to

that achieved by R(gag) inputs with optimized model

parameters will have GRE and GRB values of 0. First,

we see inputs from R(Z, ZDRjBC) and R(Z, ZDRjBC,

HCA) yielded streamflow simulations that were more

skillful than those achieved using the conventional R(Z)

FIG. 6. Simulated and observed discharge for events listed in Table 1. All rainfall inputs were unadjusted.
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algorithm. The R(KDP), R(Z, ZDRjJPOLE), R(Z, ZDRj
JPOLE, HCA), and R(syn) algorithms, on the other

hand, all had worse hydrologic skill than those simula-

tions forced by R(Z) inputs. The rain gauge evaluation

in section 4 indicated these algorithms had the largest

negative biases. Apparently, hydrologic simulations ac-

cording to the GRB and GRE scores are rather sensitive

to rainfall bias (accuracy). Regarding the magnitude of

the NB found in the rain gauge evaluation in comparison

to the GRB found using ARID, we see the biases with

each of the KOUN precipitation algorithms have been

approximately halved after propagating through the

hydrologic model as streamflow.

The sensitivity of hydrologic simulation to rainfall bias

combined with the differing behaviors of KOUN rainfall

algorithm biases as a function of rainfall intensity and

storm event (see section 4) prompted us to reexamine

ARID findings, this time with long-term, event-combined

rainfall biases corrected (i.e., removed). To do this, we

applied a single mean field bias adjustment to each

KOUN precipitation algorithm based on the NB values

shown in Fig. 2. Then, we performed ARID as before but

using the unbiased rainfall estimators. The simulations

for each event are shown in Fig. 8. In comparing Figs. 6, 8,

improvements in skill are readily visible after rainfall

biases have been removed. However, overestimation of

streamflow is still present for the events with observed

peak discharges ,30 m3 s21 (Figs. 8b,f,g,i). This finding

confirms that, indeed, the hydrologic model error domi-

nates the streamflow simulations when the events are

weak and are thus not heavily driven by the rainfall forc-

ing, even after the rainfall biases were removed. Figure 7

quantifies the overall hydrologic skill based on GRE and

GRB scores. Significant improvements are noted in both

GRE and GRB scores for all KOUN algorithms following

bias correction (denoted by an asterisk superscript), with

the notable exception of R(Z)*. In fact, all precipitation

algorithms using polarimetric observations with bias cor-

rection outperformed R(Z) and R(Z)*. Evidently, the high

variability of the R(Z) bias changing from event to event

means a long-term bias adjustment yields no improvement

in hydrologic simulation. The biases associated with the

polarimetric algorithms, on the other hand, have a more

stationary behavior and, when the long-term bias has

been removed, significant improvement in hydrologic

skill is realized.

The best hydrologic skill is associated with R(syn)*

and R(Z, ZDRjBC, HCA)*. Figure 3 shows these two

algorithms in particular had significant biases prior to

correction, but the biases were virtually independent

of rainfall intensity. Here R(syn)* and R(Z, ZDRjBC,

HCA)* are the least susceptible to DSD variability and

have biases with a stationary behavior, both of which are

evidently positive attributes when considering them as

rainfall inputs for hydrologic simulation. We also see

improvements in R(Z, ZDRjBC, HCA)* over R(Z, ZDRj
BC)* and in R(Z, ZDRjJPOLE, HCA)* over R(Z, ZDRj
JPOLE)*, indicating the HCA component yielded im-

provement to precipitation algorithms employing po-

larimetric observations. Of all polarimetric algorithms

FIG. 7. The hydrologic skill of KOUN radar-rainfall estimates shown in the legend, where the

estimators denoted with an asterisk (*) have been bias adjusted based on results from the

radar–rain gauge evaluation. Refer to (8) and (9) for definitions of the hydrologic skill scores.
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with bias adjustment, R(KDP)*, which used the least

amount of polarimetric information, had the lowest hy-

drologic skill. This analysis indicates information pro-

vided by all polarimetric observations [i.e., use of Z, ZDR,

and KDP in the R(syn)* estimator] and complex utili-

zation of the data, such as in the HCA, are justified.

However, the bulk of the improvement in hydrologic

simulation was only realized following event-combined

bias correction.

6. Summary and conclusions

A heavily instrumented USDA ARS research water-

shed near Ft. Cobb, Oklahoma was used to 1) evaluate

precipitation estimates from the KOUN polarimetric

prototype of the WSR-88D and to 2) assess the impacts

of polarimetric precipitation estimation on hydrologic

simulation using the calibrated HL-RDHM. Hourly

precipitation from seven polarimetric algorithms were

compared to 15 ARS Micronet rain gauge accumula-

tions totaling 1299 radar–gauge pairs over nine separate

events from 2005 to 2008. The following points are

summarized below from the rain gauge evaluation:

d In terms of cumulative skill metrics, all algorithms that

used polarimetric observations yielded better pre-

cision by reducing the SE and increasing the CORR

over the conventional R(Z) estimator.
d When events were considered altogether, the least

biased (most accurate) precipitation algorithm was the

conventional R(Z) estimator.

FIG. 8. As in Fig. 6 but rainfall inputs had event-combined bias removed based on radar–rain gauge analysis shown in Fig. 2.
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d The NB of R(Z) had the greatest variability from

event to event, due to different DSDs and the pres-

ence of hail, and tended to underestimate increasingly

with higher rainfall intensities.
d At a distance of 83–120 km from KOUN, the synthetic

polarimetric precipitation algorithm R(syn) had the

most significant underestimation with an NB of 231%

(least accurate), but this bias was virtually indepen-

dent of rainfall intensity and storm events character-

ized by different DSDs and presence of hail.

The second component of this study evaluated the

polarimetric precipitation algorithms in the context as

inputs to a distributed hydrologic model so as to assess

the impacts of polarimetric upgrades to the WSR-88D

network on hydrologic simulation and flash flood fore-

casting. A methodology called Assessment of Rainfall

Inputs using Differential Evolution Adaptive Metropolis

(DREAM; ARID) was developed and implemented to

evaluate polarimetric precipitation algorithms. The fun-

damental requirements of ARID were ARS Micronet

rain gauge data [R(gag)] to represent the ‘‘true,’’ un-

biased rainfall and an automated parameter estimation

methodology. The R(gag) data were input into HL-

RDHM for the 3-yr calibration period from 2005 to 2008,

and then 647 425 simulations were performed within

the DREAM framework to automatically locate the op-

timized parameter scalar multipliers. These parameter

settings were then fixed and the calibrated model was

rerun with rainfall forcing from the seven KOUN algo-

rithms. Continuous simulations were performed for the

3-yr period where R(gag) data were used in between

events (i.e., when polarimetric data were not available)

to provide accurate model states. Two new statistical

measures—gauge-relative bias (GRB) and gauge-relative

error (GRE)—quantified the hydrologic skill of each al-

gorithm relative to the simulation forced by R(gag) used

in the model calibration step. Limitations of applying the

ARID methodology were noted with four weakly forced

events that had peak discharges ,30 m3 s21. Streamflow

was overpredicted with these cases regardless of rainfall

forcing, which indicates the combination of model error

and parametric uncertainty dominated the uncertainty in

the streamflow response instead of the uncertainty in the

rainfall inputs. The following points summarize the hy-

drologic skill of the evaluated polarimetric algorithms:

d Rainfall biases found with each of the polarimetric

precipitation algorithms were approximately halved

after propagating through the hydrologic model as

streamflow.
d When the precipitation algorithms were evaluated

‘‘as is’’ with no bias correction, R(Z, ZDRjBC) and

R(Z, ZDRjBC, HCA) were the only polarimetric pre-

cipitation estimators to improve hydrologic skill over

conventional R(Z) inputs.
d Following correction of event-combined bias based on

the rain gauge evaluation, all simulations forced by

polarimetric precipitation estimators outperformed

the conventional R(Z) and the bias-corrected R(Z)*.
d The hydrometeor classification algorithm (Giangrande

and Ryzhkov 2008; Park et al. 2009) added to both

R(Z, ZDRjBC)* and R(Z, ZDRjJPOLE)*, subject to

bias correction, yielded improvements in hydrologic

simulation.
d The best hydrologic skill, relative to parameter settings

from R(gag) forcing, was achieved with forcing from

bias-corrected R(syn)* and R(Z, ZDRjBC, HCA)*.

This study found that polarimetric precipitation al-

gorithms were more precise than the conventional R(Z)

estimates, as denoted by lower SE values, but were sub-

ject to significant underestimation up to 231% at ranges

greater than 80 km; range-dependent errors of polari-

metric precipitation algorithms have been explored in

more detail in Giangrande and Ryzhkov (2008). It is pos-

sible that polarimetric rainfall biases on other radars will

also result from miscalibrated Z and ZDR values, which

were carefully corrected in this study. The mitigation of

these biases, however, was found to be very effective in

continuous hydrologic simulation because the biases in

the polarimetric precipitation algorithms were relatively

stationary in behavior; they were virtually independent of

rainfall intensity and storm events characterized by dif-

ferent DSDs and the presence of hail. It is thus imperative

that long-term biases of polarimetric precipitation algo-

rithms are initially identified and corrected before being

implemented in hydrologic models. We recommend fu-

ture studies focused on polarimetric precipitation errors

as a function of range, as in Giangrande and Ryzhkov

(2008), but for other geographic areas and storm types.

Following this correction, improvement in hydrologic

simulation was found to correspond to better precision

of the precipitation algorithms. This precision resulted

from increasing complexity in the algorithm formula-

tions in terms of the number of polarimetric parameters

used, inclusion of a hydrometeor classification algorithm,

and adaption of the utility of all three polarimetric ob-

servations based on precipitation rate as in the R(syn)

algorithm.

Areas inviting future research are estimating param-

eters in distributed hydrologic models with continuous

datasets of polarimetric observations, examination of po-

larimetric precipitation inputs in hydrologic simulations

in diverse geographic regimes, such as the intermountain

West, and in basins with smaller catchment areas. Another
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topic worth pursuing is the simultaneous estimation of

parameters used in polarimetric precipitation relations

along with hydrologic model parameters using the dif-

ference between simulated and observed discharge.
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